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48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 23-26 2007, Sheraton Waikiki, Honolulu, HI

Statistical Control Paradigm for Aerospace Structures

Under Impulsive Disturbances

Khanh D. Pham∗and Lawrence M. Robertson†

Air Force Research Laboratory, Kirtland AFB, New Mexico, 87117, U.S.A.

In this paper the newly developed statistical control theory is revisited to autonomously
control the satellite attitude as well as to provide a means of actively attenuating impulsive
disturbances caused by servicing dock and space debris. Simulations are performed using
several docking and collision scenarios. The simulation results indicate that the existing
attitude control system with an innovative and robust statistical controller design shows
significant promise for use in attitude hold mode operation despite the presence of impulsive
disturbances.

Nomenclature

HC Angular momentum of the satellite about its center of mass measured in inertial frame {N}
HW Angular momentum of the wheel cluster
JC Satellite inertia
JW Reaction wheel inertia
ωS/N Angular velocity vector in fixed-body reference frame {S}
ωW Angular velocity of the reaction wheels
L Wheel orientation matrix
τthrt Absolute torque due to the thrusters
τW Absolute torque due to the reaction wheels
τgrav Torque due to the earth gravity gradient
τmag Torque due to the earth magnetic field
τaero Torque due to atmospheric drag
τsrp Torque due to solar radiation pressure

I. Introduction

Recent work1–5 reported at several American Control Conferences showed that the statistical control
design has been performing quite competitively with other modern control techniques. In the statistical
control formulation, a state-feedback controller is designed to minimize the objective function representing
a linear combination of finite cumulant indices of a finite horizon integral quadratic performance measure
associated to a linear stochastic system. A dynamic programming approach is used to obtain the optimal
control solution. This control algorithm is then applied to attenuate dynamical effects due to impulsive
disturbances. Motivations for this arise from the need to study control problems related to antennas on the
space station subject to impact from space debris and active damping of vibrations of flexible structures
caused by impact forces. The outline of the paper goes as follows. First, a brief modeling of satellite with
reaction wheels and thrusters will be given below. Then some stabilizing controllers minimizing the first
three cost cumulant indices from space disturbances to the controlled output are subsequently designed.
Finally, the results of simulation are presented along with some discussions.

∗Aerospace Engineer, Space Vehicles Directorate, 3550 Aberdeen Ave SE, and AIAA Member.
†Dynamics & Controls Program Manager, Space Vehicles Directorate, 3550 Aberdeen Ave SE, and AIAA Senior Member.
Copyright c© 2007 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free

license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the
copyright owner.
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II. Mathematical Model of Satellite with Reaction Wheels and Thrusters

This section gives the reader an overview of a simple mathematical model for center of mass steering and
attitude control of a Low-Earth-Orbiting (LEO) satellite whose detailed definition is given in Won.6 This
model assumes that the largest disturbance is the gravity gradient torque while other space disturbances
are small and can thus be modeled as a stationary Wiener random process. Moreover the internal torques
generated by a cluster of four reaction wheels and three thrusters are for use in controlling the attitude of
the satellite. Then the angular momentum of the satellite with three thrusters and a cluster of four reaction
wheels becomes

~HC = JC~ωS/N + LT JW ~ωW (1)

where JW is the mass moments of inertia of the reaction wheels; ~ωW is the angular velocity of the wheels;
and L is the wheel orientation matrix

JW =




JW
11 0 0 0
0 JW

22 0 0
0 0 JW

33 0
0 0 0 JW

44


 , L =




cosα sin β sin α sin β cosβ

− sin α sin β cos α sin β cosβ

− cos α sin β − sin α sin β cosβ

sin α sin β − cosα sin β cosβ


 . (2)

Furthermore, the transpose of the wheel orientation matrix L is denoted by

LT =




Lt(1, 1) Lt(1, 2) Lt(1, 3) Lt(1, 4)
Lt(2, 1) Lt(2, 2) Lt(2, 3) Lt(2, 4)
Lt(3, 1) Lt(3, 2) Lt(3, 3) Lt(3, 4)




with α = 45 degrees and β = 54.74 degrees. By taking the inertial time derivative of (1), the nonlinear
satellite attitude dynamics can be described in terms of vector and matrix notations

JC ω̇S/N + LT JW ω̇W + ω̃S/N
(
JCωS/N + LT JW ωW

)
= τthrt + τgrav + w , (3)

where the stationary Wiener process w and the cross product matrix ω̃S/N are defined as

w , τaero + τmag + τsrp , ω̃S/N ,




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .

Furthermore, the angular momentum of the wheel cluster HW and the absolute torque due to the reaction
wheels τW are related by

ḢW = τW , (4)

HW = JW ωW + JW LωS/N . (5)

From the equation (5), it is possible to write

ω̇W = J−1
W τW − Lω̇S/N , (6)

which results in
(
JC − LT JW L

)
ω̇S/N = −ω̃S/N

(
JCωS/N + LT JW ωW

)
− LT τW + τthrt + τgrav + w . (7)

Let J4 , JC − LT JW L. The equations (6) and (7) can then be rewritten as follows

ω̇S/N = −J−1
4 ω̃S/N

(
JCωS/N + LT JW ωW

)
− J−1

4 LT τW + J−1
4 τthrt + J−1

4 τgrav + J−1
4 w , (8)

ω̇W = J−1
W τW + LJ−1

4 ω̃S/N
(
JCωS/N + LT JW ωW

)
+ LJ−1

4 LT τW − LJ−1
4 τthrt − LJ−1

4 τgrav − LJ−1
4 w .

(9)
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Moreover, the orientation of the body-fixed reference frame S relative to the orbital reference frame O can
also be described by introducing the time dependence of quaternions q = (q1, q2, q3, q4)T . Note that the
orbital reference frame O = {Ox, Oy, Oz} is rotating about the Oy axis with respect to the Newtonian
inertial reference frame N at the orbital rate ω0. The axes of O are chosen such that the roll axis Ox is in
the flight direction, the pitch axis Oy is perpendicular to the orbital plane in the negative direction and the
yaw axis Oz points from the satellite to the earth center. The benefits of using quaternions as opposed to
Euler angles include no inherent geometric singularity and suitability of onboard real-time computation. It
is shown from Wie10 that the kinematic differential equations for quaternions can be shown as follows




q̇1

q̇2

q̇3

q̇4


 =

1
2




0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0







q1

q2

q3

q4


 . (10)

where ωS/O = (ωx, ωy, ωz)T is the rotation rate of the body-fixed reference frame S with respect to the orbit
reference frame O, expressed in the body-fixed reference frame. Moreover, the direction cosine matrix, CS/O

is needed for a coordinate transformation that maps the angular velocity from ωS/O to ωS/N

ωS/N = ωS/O + CS/OωO/N , (11)

CS/O =




q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) q2

2 − q2
1 − q2

3 + q2
4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) q2
3 − q2

1 − q2
2 + q2

4


 . (12)

Thus, when

ωO/N =




0
−ω0

0


 , (13)

is the inertial rotation rate of the orbital reference frame with respect to the inertial frame, the ωx, ωy, and
ωz in (10) can be replaced according to the following equations

ωx = ω1 + 2ω0(q1q2 + q3q4) , (14)

ωy = ω2 + ω0(q2
2 − q2

1 − q2
3 + q2

4) , (15)
ωz = ω3 + 2ω0(q2q3 − q1q4) . (16)

The gravity gradient torque about the satellite’s mass center is given by Wie10

τgravity = 3ω2
0
~Oz × JC

~Oz , (17)

where the vector Oz, represents the projection of the orbit radius vector onto the body-fixed reference frame,
S

~Oz = C
S/O
13 ŝ1 + C

S/O
23 ŝ2 + C

S/O
33 ŝ3 . (18)

Thus, the equation (17) becomes

τgravity = 3ω2
0




0 −C
S/O
33 C

S/O
23

C
S/O
33 0 −C

S/O
13

−C
S/O
23 C

S/O
13 0







J11 0 0
0 J22 0
0 0 J33







C
S/O
13

C
S/O
23

C
S/O
33


 ,

= 3ω2
0




0 −(q2
3 − q2

1 − q2
2 + q2

4) 2(q2q3 + q1q4)
(q2

3 − q2
1 − q2

2 + q2
4) 0 −2(q1q3 − q2q4)

−2(q2q3 + q1q4) 2(q1q3 − q2q4) 0




·




J11 0 0
0 J22 0
0 0 J33







2(q1q3 − q2q4)
2(q2q3 + q1q4)

(q2
3 − q2

1 − q2
2 + q2

4)


 . (19)
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Finally the the rotational motions of the satellite with three rotational degrees of freedom can be described
by the kinematic differential equations

q̇1 =
1
2

(ω1q4 − ω2q3 + ω3q2 + ω0q3) , (20)

q̇2 =
1
2

(ω1q3 + ω2q4 − ω3q1 + ω0q4) , (21)

q̇3 =
1
2

(−ω1q2 + ω2q1 + ω3q4 − ω0q1) , (22)

q̇4 =
1
2

(−ω1q1 − ω2q2 − ω3q3 − ω0q2) , (23)

J4ω̇S/N = −ω̃S/N
(
JCωS/N + LT JW ωW

)
− LT τW + τthrt + τgrav + w , (24)

ω̇W = LJ−1
4 ω̃S/N

(
JCωS/N + LT JW ωW

)
+

(
LJ−1

4 LT + J−1
W

)
τW − LJ−1

4 τthrt − LJ−1
4 τgrav − LJ−1

4 w .

(25)

which can be further rewritten compactly using the mapping f : R11 × R7 × R 7→ R11 whose rule of action
is given by

ẋ = f(x, u, t) + v , t ∈ [t0, tf ] (26)

wherein the state variable, x ∈ R11; control variable constrained to some compact set, u ∈ R7; and combined
torque disturbances, v ∈ R3 are defined by

x =




x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11




,




q1

q2

q3

q4

ω1

ω2

ω3

ωW
1

ωW
2

ωW
3

ωW
4




, u =




u1

u2

u3

u4

u5

u6

u7




,




τW (1)
τW (2)
τW (3)
τW (4)
τthrt(1)
τthrt(2)
τthrt(3)




, v = Gw ,




04×3

J−1
4

−LJ−1
4


 w ,

and t0 and tf are the beginning and ending mission lifetimes. Since the high fidelity nonlinear model in
(20)-(25) is too complicated for use in control design. It is necessary to develop a simpler linearized model
which can approximate the system over a wide range of conditions. The following linearized model assumes
a circular orbit, and linearization is performed about the equilibrium nadir-pointing attitude. Clearly, it is
easy to see that there exist two trivial equilibrium points (x∗, u∗) for the deterministic system ẋ = f(x, u, t)

x∗ = (0, 0, 0, 1, 0,−ω0, 0, 0, 0, 0, 0) , x∗ = (0, 0, 0,−1, 0,−ω0, 0, 0, 0, 0, 0) ,

u∗ = (0, 0, 0, 0, 0, 0, 0) , u∗ = (0, 0, 0, 0, 0, 0, 0) ,

such that

f(x∗, u∗, t) = 0 , t ∈ [t0, tf ] .

Once the satellite is in orbit, the satellite is controlled to keep its pointing direction about a pre-computed
orientation. In this case, a reference orientation is defined as a state x∗ in which the deviation of orientation
is preferably zero under a steady state condition. The control objective is to regulate the orientation of
the satellite about these desired orientations. The satellite’s tracking of itself to the prescribed orientation
is equivalent to the expression x − x∗ being zero. This indicates that linearization of (26) about some
reference orientation can be useful for studying the effect of perturbation away from the desired orientation
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and remains accurate for sizable changes in the satellite’s angular velocity. Reaction wheels and electric
thrusters can be used to actively drive observed perturbations back to zero. The expansion of the right-hand
side of the equation (26) in a first-order Taylor series expansion in terms of small perturbations proceeds
with

δx = x− x∗ ,

δu = u− u∗ ,

where the reference orientation and the nominal control input are

x∗ =




x∗1
x∗2
x∗3
x∗4
x∗5
x∗6
x∗7
x∗8
x∗9
x∗10
x∗11




, u∗ =




u∗1
u∗2
u∗3
u∗4
u∗5
u∗6
u∗7




.

The linearization of (20)-(25) about the reference orientation yields

δẋ(t) = A(x∗(t), u∗(t))δx(t) + B(x∗(t), u∗(t))δu(t) + v(t) , δx(t0) = x0 , (27)

where matrix coefficients A(·, ·), and B(·, ·) are given by

A(x∗(t), u∗(t)) =
∂f

∂x

∣∣∣∣∣
(x∗,u∗)

=




Ax1:4x1:4 Ax1:4x5:7 Ax1:4x8:11

Ax5:7x1:4 Ax5:7x5:7 Ax5:7x8:11

Ax8:11x1:4 Ax8:11x5:7 Ax8:11x8:11


 , (28)

B(x∗(t), u∗(t)) =
∂f

∂u

∣∣∣∣∣
(x∗,u∗)

=




Bx1:4u1:4 Bx1:4u5:7

Bx5:7u1:4 Bx5:7u5:7

Bx8:11u1:4 Bx8:11u5:7


 . (29)

where

Ax1:4x1:4 =




0 0 ω0 0
0 0 0 0
−ω0 0 0 0

0 0 0 0


 , Ax1:4x5:7 =




1
2 0 0
0 1

2 0
0 0 1

2

0 0 0


 , Ax1:4x8:11 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

Ax5:7x1:4 = (JC − LT JW L)−1




6ω2
0(J33 − J22) 0 0 0

0 6ω2
0(J33 − J11) 0 0

0 0 0 0


 ,

Ax5:7x5:7 = (JC − LT JW L)−1




0 0 −ω0(J22 − J33)
0 0 0

−ω0(J11 − J22) 0 0


 ,

Ax5:7x8:11 = (JC − LT JW L)−1




ω0Lt(3, 1)JW
11 ω0Lt(3, 2)JW

22 ω0Lt(3, 3)JW
33 ω0Lt(3, 4)JW

44

0 0 0 0
−ω0Lt(1, 1)JW

11 −ω0Lt(1, 2)JW
22 −ω0Lt(1, 3)JW

33 −ω0Lt(1, 4)JW
44


 ,
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Ax8:11x1:4 = −LAx5:7x1:4 , Ax8:11x5:7 = −LAx5:7x5:7 , Ax8:11x8:11 = −LAx5:7x8:11 ,

Bx1:4u1:4 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , Bx1:4u5:7 =




0 0 0
0 0 0
0 0 0
0 0 0


 ,

Bx5:7u1:4 = −(JC − LT JW L)−1LT , Bx5:7u5:7 = (JC − LT JW L)−1 ,

Bx8:11u1:4 = L(JC − LT JW L)−1LT + J−1
W , Bx8:11u5:7 = −L(JC − LT JW L)−1 .

III. Model of Satellite In Events of Servicing Dock and Debris Impacts

Next, the conservation of angular momentum is utilized in the event of docking and space debris impacts.
The assumptions made herein include not limited to the case where a servicing satellite that is slowly
attaching to the satellite, or the case where high speed debris is embedded in a perfectly inelastic collision.
Thus, the angular momentum immediately before and after the impact event must match

[
~HSat + ~HDocking/Debris

]
Pre−Impact

=
[
~HSat + ~HDocking/Debris

]
Post−Impact

. (30)

It is well to note that the angular momentum of the satellite before and after the impact are

~HSat|Pre−Impact = 0 ,

~HSat|Post−Impact = JSat+Docking/Debris~ω
S/N ,

and the angular momentum of either a servicing satellite or space debris is given by

~HDocking/Debris|Pre−Impact = ~rDocking/Debris ×mDocking/Debris~vDocking/Debris ,

~HDocking/Debris|Post−Impact = 0 ,

wherein ~rDocking/Debris is the position vector from the satellite’s center of mass to the point of impact
and mDocking/Debris~vDocking/Debris is the linear momentum of either a servicing satellite or space debris.
Therefore, the equality (30) can be readily reduced to

~rDocking/Debris ×mDocking/Debris~vDocking/Debris = JSat+Docking/Debris~ω
S/N , (31)

provided JSat+Docking/Debris = JC + 4JC is the combined moment of inertia of the satellite, servicing
satellite or space debris. Resolving ~rDocking/Debris and ~vDocking/Debris into the body-fixed reference frame S

~rDocking/Debris = r1ŝ1 + r2ŝ2 + r3ŝ3 ,

~vDocking/Debris = v1ŝ1 + v2ŝ2 + v3ŝ3 ,

yields the angular velocities of the satellite in the event of either docking or collision

ω1 = mDocking/Debris
r2v3 − r3v2

J11
Sat+Docking/Debris

, (32)

ω2 = mDocking/Debris
r1v3 − r3v1

J22
Sat+Docking/Debris

, (33)

ω3 = mDocking/Debris
r1v2 − r2v1

J33
Sat+Docking/Debris

. (34)

From the equation (31), it is observed that a soft docking would be possible if the servicing satellite had
small mass, docked slowly and was close to the center of mass of the satellite. For simplicity, impact forces
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caused by either the docking event or space debris are modeled as finite duration events and it is further
fruitful to assume that each impact duration is very short and is denoted as ti+1− ti , hi. Thus, the impact
can be treated as an impulsive event and the impact force wd(ti)δ(t− ti) generated by the ith impact and the
resulting angular velocity of the satellite ω1(ti), ω2(ti), and ω3(ti) caused by the ith impact force is defined
as

ω1(ti) = mDocking/Debris(ti)
r2(ti)v3(ti)− r3(ti)v2(ti)
J11

Sat+Servicing/Debris(ti)
,

ω2(ti) = mDocking/Debris(ti)
r1(ti)v3(ti)− r3(ti)v1(ti)
J22

Sat+Servicing/Debris(ti)
,

ω3(ti) = mDocking/Debris(ti)
r1(ti)v2(ti)− r2(ti)v1(ti)
J33

Sat+Servicing/Debris(ti)
,

and the resultant change of the quaternions q1(ti), q2(ti), q3(ti), and q4(ti) are obtained via the kinematic
equations (10). It is worth noting that the effect of impulsive disturbances causes possible jumps of state
variables. The state space realization of the satellite in the event of the docking or space debris impacts is
therefore a hybrid system which contains both continuous-time and discrete-time components and can be
expressed as follows,

δẋ(t) = A(t)δx(t) + B(t)δu(t) + G(t)w(t) +
∞∑

i=1

Ed(ti)wd(ti)δ(t− ti) , δx(t0) = x0 , (35)

where δ(t) is the Dirac Delta function; the impulsive disturbances wd(ti) ∈ l2([t0, tf ] ,R3) the Hilbert space
of square-summable R3-valued sequences with the norm defined by ||wd||2l2 ,

∑
ti∈[t0,tf ] w

T
d (ti)wd(ti); the

states δx(t) ∈ L2
Ft

(Ω; C([t0, tf ];R11)) the subset of Hilbert space of R11-valued square-integrable process
on [t0, tf ] that are adapted to the σ-field Ft generated by w(t) with the norm defined by ||δx||2L2

,
E

{∫ tf

t0
δxT (τ)δx(τ)dτ

}
< ∞; and the control input δu(t) ∈ L2

Ft
(Ω; C([t0, tf ];R7)) the subset of Hilbert

space of R7-valued square integrable process on [t0, tf ] that are adapted to the σ-field Ft generated by w(t)

with the norm defined by ||δu||2L2
, E

{∫ tf

t0
δuT (τ)δu(τ)dτ

}
< ∞. The impact instants ti ∈ [t0, tf ]. No-

tice that continuous-time bounded coefficients A(t), B(t), and G(t) are defined as before with appropriate
dimensions whereas the discrete-time matrix coefficient Ed(ti) is given by

Ed(ti) =




0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0




, (36)

It is also interesting to represent the hybrid system (35) in the form of

δẋ(t) = A(t)δx(t) + B(t)δu(t) + G(t)w(t) , t 6= ti , δx(t0) = x0 , (37)

δx(t+) = δx(t) + Ed(ti)wd(ti) , t = ti , i = 1, 2, . . . , (38)

where δx(t+i ) are the values of state dynamics immediately after the impulses, and the time limit t+ is defined
as limε→0(ti + ε) for ε ∈ R+. It is important to note that the state variables δx(t) are right continuous and
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may be left discontinuous due to the discrete time jumps. The continuous and discrete system parts described
by (37)-(38) are rewritten as

Gc :
{

δẋ(t) = A(t)δx(t) + B(t)δu(t) + G(t)w(t) , t 6= ti , δx(t0) = x0 , (39)

Gd :
{

δx(t+) = δx(t) + Ed(ti)wd(ti) , i = 1, 2, . . . , (40)

As depicted in Figure 1, a reference orientation is fed into the satellite controller subsystem which then
calculates the wheel and thruster commands based on the target orientation and the current orientation.
Consequently, it results in a change in reaction wheel angular accelerations and thruster torques and thus
the satellite motion is altered. The motion is sensed in the body frame of reference and is changed into an
inertial frame by the kinematic equations.

+ Satellite 

Controller

Satellite

Dynamics

Kinematic

Equations Gyro

Command Response

Body RatesInertial Orientation

Figure 1. Satellite Functional Block Diagram

IV. Statistical Control Development

As the satellite is launched into an intended orbit, it never remains in the ideal orientation. In addition
to servicing dock and space debris impacts, the external forces present in space created by J2, solar radiation
pressure, and aerodynamic torques cause perturbations to this ideal orientation. Thus, the linear time-
varying system with finite discrete jumps can now be rewritten

Gc :
{

dx(t) = (A(t)x(t) + B(t)u(t)) dt + G(t)dw(t) , t 6= ti , x(t0) = x0 , (41)

Gd :
{

xd(t+) = xd(t) + Ed(ti)wd(ti) , t = ti , i = 1, 2, . . . , (42)

where A ∈ C([t0, tf ];Rn×n), B ∈ C([t0, tf ];Rn×m), G ∈ C([t0, tf ];Rn×p) and the system noise w(t) ∈ Rp

representing all external forces in space other than space debris collisions and servicing docking, is a stationary
Wiener process with correlation of increments E

{
[w(t)− w(σ)][w(t)− w(σ)]T

}
= W |t − σ|. Also, assume

the initial state x(t0) = x0 is known. For a given (t0, x0), associate with the nominal system (41) a finite
time integral quadratic form (IQF) random cost J : C([t0, tf ];Rm) 7→ R+ such that

J(u) = xT (tf )Qfx(tf ) +
∫ tf

t0

[
xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)

]
dτ , (43)

where Qf ∈ Rn×n, Q ∈ C([t0, tf ];Rn×n) and R ∈ C([t0, tf ];Rm×m) are symmetric and positive semidefinite
with R(t) invertible.

As observed by Liberty,7 all cumulants of any IQF cost in the system state of linear dynamical systems
are quadratic affine in the initial state. In the case of state measurement, it is thus fruitful to assume the
control input u(t) to be a linear time-varying feedback law given by

u(t) = K(t)x(t) , t ∈ [t0, tf ] (44)

in which K ∈ C([t0, tf ];Rm×n) is an admissible feedback gain whose definition will be clear shortly.
For a given initial condition (t0, x0) and an admissible gain K, the kth cost cumulant of random cost J

with fixed k ∈ Z+ is given by Liberty7 by

κk(t0, x0;K) = xT
0 H(t0, k)x0 + D(t0, k) , (45)
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where cumulant-building variables H(α, k) and D(α, k) evaluated at α = t0 are satisfying the differential
equations (suppressing time argument of matrix coefficients)

d

dα
H(α, 1) = −(A + BK)T H(α, 1)−H(α, 1)(A + BK)−KT RK −Q , (46)

d

dα
H(α, i) = −(A + BK)T H(α, i)−H(α, i)(A + BK)−

i−1∑

j=1

2i!
j!(i− j)!

H(α,j)GWGT H(α, i− j), (47)

d

dα
D(α, i) = −Tr

{
H(α, i)GWGT

}
, 1 ≤ i ≤ k , (48)

with the terminal conditions H(tf , 1) = Qf , H(tf , i) = 0 for 2 ≤ i ≤ k, and D(tf , i) = 0 for 1 ≤ i ≤ k.
Now it is convenient to denote the right members of the equations (46)-(48) by the symmetric mappings

F1(α,H,K) = −(A + BK)T H(α, 1)−H(α, 1)(A + BK)−KT RK −Q ,

Fi(α,H,K) = −(A + BK)T H(α, i)−H(α, i)(A + BK)−
i−1∑

j=1

2i!
j!(i− j)!

H(α, j)GWGT H(α, i− j),

Gi(α,H) = −Tr
{
H(α, i)GWGT

}
, 1 ≤ i ≤ k ,

with k-tuple matrix variables

H(α) = (H(α, 1), . . . , H(α, k)) ,

D(α) = (D(α, 1), . . . , D(α, k)) .

Thus, the product system of (46)-(48) is written as follows

d

dα
H(α) = F(α,H,K) , H(tf ) = Hf ,

d

dα
D(α) = G(α,H) , D(tf ) = Df ,

where Hf = (Qf , 0, . . . , 0) and Df = (0, . . . , 0). Next denote explicitly the dependence of H(α) and D(α) on
the admissible control gain K by H(α, K) and D(α,K). Hence, the performance index in the kCC control
problem follows.

Definition 1 (Performance Index)
Fix a k ∈ Z+ and a sequence µ = {µi ≥ 0}k

i=1 with µ1 > 0. With (t0, x0) given, the performance index of
the state feedback kCC control problem is defined by

φ0 (t0,H(t0,K),D(t0,K)) =
k∑

i=1

µiκi(t0, x0;K)

= xT
0

k∑

i=1

µiHi(t0,K)x0 +
k∑

i=1

µiDi(t0,K) , (49)

where the real constants µi give parametric control freedom.

The class Kµ of admissible feedback gains is then defined.

Definition 2 (Admissible Feedback Gains)
Let the compact subset K ⊂ Rm×n be the allowable set of gain values. For a given k ∈ Z+ and a sequence
µ = {µi ≥ 0}k

i=1 with µ1 > 0, let Kµ be the class of C([t0, tf ];Rm×n) with values K(·) ∈ K for which there
exist solutions to the dynamic equations of motion

d

dα
H(α) = F(α,H(α),K(α)) , H(tf ) = Hf , (50)

d

dα
D(α) = G(α,H(α)) , D(tf ) = Df . (51)
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The kCC control optimization problem is now stated.

Definition 3 (Optimization Problem)
Suppose both k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1 with µ1 > 0 are fixed. Then the finite horizon state
feedback kCC control optimization may be defined by

min
K∈Kµ

φ0 (t0,H(t0,K),D(t0,K)) , (52)

subject to the dynamic equations of motion, for all α ∈ T ,

d

dα
H(α) = F(α,H(α),K(α)) , H(tf ) = Hf , (53)

d

dα
D(α) = G(α,H(α)) , D(tf ) = Df . (54)

This “Mayer form” optimization problem can be solved by applying an adaptation of the HJB equation and
verification theorem of dynamic programming given in Fleming and Rishel.8 Readers who are interested in
seeing the detailed adaptation and associated proofs should refer to the reference.9

Theorem 1 (HJB Equation)
If there exists an optimal control gain K∗ ∈ Kµ, then the partial differential equation of dynamic programming

min
K∈K

{
∂

∂ ε
V(ε,Y,Z) +

∂

∂ vec(Y)
V(ε,Y,Z)vec(F(ε,Y,K)) +

∂

∂ vec(Z)
V(ε,Y,Z) vec(G(ε,Y))

}
= 0 . (55)

is satisfied. Here V(·, ·, ·) is the value function.

The verification theorem stated in the notation used here is

Theorem 2 (Verification Theorem)
Fix a k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1 with µ1 > 0. Also, let the candidate value function
W(ε,Y,Z) be a continuously differentiable solution of the HJB equation (55) which satisfies the boundary
condition

W(t0,H0,D0) = φ0 (t0,H0,D0) . (56)

Let K ∈ Kµ be any admissible control gain and let H(·) and D(·) be the corresponding solutions of the
equations of motion (53)-(54). Then W(α,H(α),D(α)) is a non-increasing function of α. If K∗ ∈ Kµ is a
control gain with corresponding solution, H∗(·) and D∗(·) of the equations (53)-(54) such that for α ∈ [t0, tf ]

∂

∂ε
W(α,H∗(α),D∗(α)) +

∂

∂vec(Y)
W(α,H∗(α),D∗(α))vec(F(α,H∗(α),K∗(α)))

+
∂

∂vec(Z)
W(α,H∗(α),D∗(α))vec(G(α,H∗(α))) = 0 , (57)

then K∗ is an optimal control gain in Kµ and

W(ε,Y,Z) = V(ε,Y,Z) . (58)

where V(ε,Y,Z) is the value function.

For any ε ∈ [t0, tf ], the cumulant-generating states of the product system (53)-(54) defined on the interval
[t0, ε] have terminal values denoted by H(ε) = Y and D(ε) = Z. Observe that the performance index (49) is
quadratic affine in terms of arbitrarily fixed x0, a hypothesis solution to the HJB equation (55) has the form

W(ε,Y,Z) = xT
0

k∑

i=1

µi(Yi + Ei(ε))x0 +
k∑

i=1

µi(Zi + Ti(ε)) ,

where Ei ∈ C([t0, tf ];Rn×n) and Ti ∈ C([t0, tf ]; R) are unknown functions of time. Placing this guess into
(55) yields

min
K∈K

{
xT

0

k∑

i=1

µi
d

dε
Ei(ε)x0 +

k∑

i=1

µi
d

dε
Ti(ε) + xT

0

k∑

i=1

µiFi(ε,Y, K)x0 +
k∑

i=1

µiGi(ε,Y)

}
= 0 . (59)

10 of 17

American Institute of Aeronautics and Astronautics Paper AIAA-2007-1755



Differentiating the bracket expression in (59) with respect to K yields the necessary condition for an ex-
tremum of the performance index (49) on [t0, tf ],

K(ε,Y) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rYr , (60)

where µ̂r = µi/µ1 and µ1 > 0. Applying the feedback gain (60) along the solution trajectories of (53)-(54)
yields

d

dε
H1(ε) = −AT (ε)H1(ε)−H1(ε)A(ε)−Q(ε) +H1(ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)H1(ε)−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) , (61)

d

dε
Hi(ε) = −AT (ε)Hi(ε)−Hi(ε)A(ε) +Hi(ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)Hi(ε)−
i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (62)

d

dε
Di(ε) = −Tr

{Hi(ε)G(ε)WGT (ε)
}

. (63)

Replacing (60) into the bracket of (59) yields the minimum

xT
0

[
k∑

i=1

µi
d

dε
Ei(ε) + AT (ε)

k∑

i=1

µiHi(ε) +
k∑

i=1

µiHi(ε)A(ε) + µ1Q(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

i=1

µiHi(ε)−
k∑

i=1

µiHi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

+ µ1

k∑
r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) +
k∑

i=2

µi

i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε)

]
x0

+
k∑

i=1

µi
d

dε
Ti(ε) +

k∑

i=1

µiTr
{Hi(ε)G(ε)WGT (ε)

}
. (64)

Having examined (64), Ei(·) and Ti(·) are chosen to satisfy the differential equations

d

dε
E1(ε) = AT (ε)H1(ε) +H1(ε)A(ε) + Q(ε)−H1(ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)H1(ε) +
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) , (65)

d

dε
Ei(ε) = AT (ε)Hi(ε) +Hi(ε)A(ε)−Hi(ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)Hi(ε) +
i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (66)

d

dε
Ti(ε) = Tr

{Hi(ε)G(ε)WGT (ε)
}

, 1 ≤ i ≤ k . (67)

At the boundary condition (56), one has

xT
0

k∑

i=1

µi(Hi0 + Ei(t0))x0 +
k∑

i=1

µi(Di0 + Ti(t0)) = xT
0

k∑

i=1

µiHi0 x0 +
k∑

i=1

µiDi0 .
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Thus, the initial conditions are found to be Ei(t0) = 0 and Ti(t0) = 0 for 1 ≤ i ≤ k. Enforcing the initial
conditions and comparing (61)-(63) to (65)-(67) uniquely specify

Ei(ε) = Hi(t0)−Hi(ε) , Ti(ε) = Di(t0)−Di(ε) ,

for any ε ∈ [t0, tf ] and yields the value function

W(t0,H(t0),D(t0)) = xT
0

k∑

i=1

µiHi(t0)x0 +
k∑

i=1

µiDi(t0) ,

which satisfies the sufficient condition (57) of Theorem 2.

Theorem 3 (Finite Horizon kCC Control Solution)
Suppose k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1 with µ1 > 0 are fixed. Then the optimal state feedback
gain K∗ that minimizes the performance index φ0 (t0,H(t0, K),D(t0,K)) is given by

K∗(α) = −R−1(α)BT (α)
k∑

r=1

µ̂rH
∗(α, r) , α ∈ [t0, tf ] (68)

where the scalar, real constants µ̂r = µi/µ1 represent parametric degrees of design freedom and solutions
H(·, r) satisfy the backward-in-time matrix differential equations

d

dα
H∗(α, 1) = −[A(α) + B(α)K∗(α)]T H∗(α, 1)−H∗(α, 1)[A(α) + B(α)K∗(α)]

−Q(α)−K∗T (α)R(α)K∗(α) , (69)
d

dα
H∗(α, r) = −[A(α) + B(α)K∗(α)]T H∗(α, r)−H∗(α, r)[A(α) + B(α)K∗(α)]

−
r−1∑
s=1

2r!
s!(r − s)!

H∗(α, s)G(α)WGT (α)H∗(α, r − s) , 2 ≤ r ≤ k (70)

with H∗(tf , 1) = Qf and H∗(tf , r) = 0 for 2 ≤ r ≤ k.

V. Simulation Results

This section contains several numerical simulations for the statistical controllers described in the previous
section. The low earth orbiting satellite is sun-synchronous remote sensing satellite with an inclination of
98.13 degrees, an altitude of 685 km and a total weight of 509 kg. It is assumed that the angular rate and
the reaction wheel speeds are available from the rate gyro and the reaction wheel tachometers, respectively.
The orbital rate, ω0 is 0.0010636 rad/s, the total moment of inertia for the spacecraft body is

JC =




294.62 0 0
0 129.56 0
0 0 209.76


 kgm2 .

This data shows that the x-axis moment of inertia is the largest, followed by that about the z-axis. The
moment of inertia about the y-axis is the smallest. Hence for gravity gradient stability, the principal x-axis
of the body should be aligned with the orbit normal (pitch), the z-axis should be aligned with the velocity
vector, and the y-axis should be the yaw axis. The body axes and the principal axes are assumed to align
with each other as the products of inertia are negligible. The moment of inertia of the reaction wheels is

JW = 0.01044




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 kgm2 ,
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and the parameters for the wheel orientation matrix, L are given as α = 45 degrees, β = 54.74 degrees.
Furthermore, the controller design parameters are selected as follows

Q = 10 · I11×11 , R = 100 · I7×7 , W = 0.0045 · I3×3 .

Having been introduced in Section III, the statistical control design equations (69)-(70), of course, are nonlin-
ear, and so represent an interesting study in themselves. In order to assess the trends of performance offered
by the use of second and third cost cumulants, it was chosen in the present instance as an approximation
approach to the application of the equations (69)-(70). The time-invariant statistical controller has the form

K = −R−1BT [H1 + µ2H2 + µ3H3] ,

where H1, H2, and H3 are solutions to coupled algebraic Riccati-type matrix equations, understood as
successive approximations to the original equations (69)-(70) for large tf

0 = AT H1 + H1A + Q−H1BR−1BT H1 + µ2
2H2BR−1BT H2

+ µ2µ3H2BR−1BT H3 + µ2µ3H3BR−1BT H2 + µ2
3H3BR−1BT H3

0 = AT H2 + H2A− 2µ2H2BR−1BT H2 −H2BR−1BT H1 −H1BR−1BT H2

− µ3H2BR−1BT H3 − µ3H3BR−1BT H2 + 4H1GWGT H1

0 = AT H3 + H3A− 2µ3H3BR−1BT H3 −H3BR−1BT H1 −H1BR−1BT H3

− µ2H3BR−1BT H2 − µ2H2BR−1BT H3 + 6H1GWGT H2 + 6H2GWGT H1 .

The design of a statistical controller using first three cost cumulants was carried out for the attitude hold
mode when µ1 = 1.0, µ2 = 2.0, and µ3 = 0.15. Figure 2 illustrates the closed-loop dynamical behavior of the
satellite Euler angles, angular rates and wheel speeds with respect to time. From initial values as indicated
in Figure 2, the satellite transient responses went to zero within one sixth of the orbital period. Thus,
the statistical control method performed satisfactorily at the attitude hold operation. Figure 3 shows the
control action from both reaction wheel cluster and thrusters. It was noted that the action of the statistical
controller was large at the start and settled down to zero very fast.

In order to evaluate the attitude hold performance of the satellite against space debris impact and
servicing dock, some numerical simulations were performed. Figure 4 depicts the effects of two space debris
collisions, one with a mass of 0.5 kg and an impact speed of 750 m/s and the other with a mass of 0.3 kg
and an impact speed of 800 m/s on the Euler angles, angular rates and wheel speeds of the satellite. The
alterations in the satellite pointing angles and angular rates were successfully corrected by statistical control
activities via reaction wheels and thrusters as can be seen in Figure 5. And the statistical controller achieved
finite-time stabilization.

Finally, a computer-aided software package has been developed to provide a complete statistical descrip-
tion of (43) associated with the Gauss-Markov linear dynamical process (41) in the form of a plot of the
probability density function. The software toolbox helps increase the depth of understanding and utility of
the statistical control theory in terms of how these statistical controllers affect the overall shape of cost den-
sities after control selection stages are taken place. As illustrated from Figure 8, the shape of the cost density
(43) becomes more symmetric as the skewness weighting µ3 increases to achieve better system performance.

VI. Conclusions

This paper has addressed the application question by applying the statistical control theory to the
response control of aerospace structures under stochastic and impulsive disturbances. Although the statistical
control method is the new kid on the block, the present results indicate in a most encouraging way that
multiple cost cumulants can be effectively utilized to achieve desirable closed-loop system performance. It
is hoped that these early results serve as a further stimulus for this very interesting approach.
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Figure 2. Closed-Loop Responses Due To Statistical Controller Design
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Figure 3. Reaction Wheel and Thruster Torques Due To Statistical Controller Design
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Figure 4. Closed-Loop Responses Due To Space Debris of 0.5 kg and 0.3 kg and Impact Speeds of 750 m/s
and 800 m/s
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Figure 5. Control Action Due To Space Debris of 0.5 kg and 0.3 kg and Impact Speeds of 750 m/s and 800
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Figure 6. Closed-Loop Responses Due To Servicing Satellite of 20 kg and Docking Speed of 5 m/s
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Figure 7. Control Action Due To Servicing Satellite of 20 kg and Docking Speed of 5 m/s
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Figure 8. Cost Densities Due to Statistical Controllers
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